
SANDIA REPORT
SAND2004-XXXX
Internal Use Only
Printed May 2004

ML 3.1 Developer’s Guide

Marzio Sala, Jonathan J. Hu, Ray S. Tuminaro

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s
National Nuclear Security Administration under Contract DE-AC04-94-AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of
Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government, nor any agency
thereof, nor any of their employees, nor any of their contractors, subcontractors, or their
employees, make any warranty, express or implied, or assume any legal liability or re-
sponsibility for the accuracy, completeness, or usefulness of any information, appara-
tus, product, or process disclosed, or represent that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service
by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute
or imply its endorsement, recommendation, or favoring by the United States Govern-
ment, any agency thereof, or any of their contractors or subcontractors. The views and
opinions expressed herein do not necessarily state or reflect those of the United States
Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from
the best available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.doe.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

D
EP

ARTMENT OF ENERG
Y

•
 •
U
N

IT
ED

STATES OF AM

ER
IC

A

���������
	
	
�
���������
�������������
�������! ��"�$#
Printed % �&# �
	
	
�

ML 3.1 Developer’s Guide

Marzio Sala
Computational Math & Algorithms

Sandia National Laboratories
P.O. Box 5800

Albuquerque, NM 87185-1110

Jonathan J. Hu and Ray S. Tuminaro
Computational Math & Algorithms

Sandia National Laboratories
P.O. Box 0969, MS 9159

Livermore, CA 94551-0969

Abstract

ML is a multigrid preconditioning package intended to solve linear systems of equations ')(!*,+ where '
is a user supplied -/.�- sparse matrix, + is a user supplied vector of length - and (is a vector of length - to be
computed. ML should be used on large sparse linear systems arising from partial differential equation (PDE)
discretizations. For an overview of ML , we refer to the ML users’ guide.

This guide is intended for anyone who will be adding to or modifying the ML source code. This document
contains suggested practices, naming conventions, and autoconf/automake hints. We don’t intend for this doc-
ument to be a set of hard-and-fast rules, but rather suggested and encouraged practices. These guidelines are
intended to be complimentary to policies established in the Trilinos Developers Guide [HWH03].

3

Acknowledgments
The authors would like to acknowledge the support of the ASCI and LDRD programs that funded the develop-
ment of ML.

4

ML 3.1 Developer’s Guide

Contents

I ML and Related Tools 8

1 Introduction . 9
1.1 Extensibility . 9

2 How To Use This Guide . 9

3 Notational Conventions . 10

4 Getting Started . 10

5 Related Tools . 11
5.1 Bonsai . 11
5.2 Bugzilla . 11
5.3 Mailing Lists . 11

II Configuration and Building 12

6 Modifying How ML is Configured and Built . 13

7 How and Why to Add a New Test . 13

8 How to Write Doxygen Documentation. 14

9 Exporting ML ’s Dependencies to Other Packages . 15

10 FAQ . 15

III Coding Practices 17

11 Suggested Practices for C++ code . 18
11.1 General . 18
11.2 File Naming Conversions . 19
11.3 Include File Structure . 20
11.4 Naming Conventions . 20
11.5 Indentation . 21
11.6 Portability . 23

IV Extending ML 24

12 Main Structures of ML . 25
12.1 Managing Memory . 25
12.2 Error Handling . 25

5

12.3 Output . 25
12.4 How Getrow() Works . 25
12.5 Apply the Smoother to a Vector . 26
12.6 Print an ML Operator in a File . 26
12.7 Timing . 27
12.8 Checking Memory Usage . 27
12.9 Attaching a Debugger to ML . 27
12.10Structure ML Comm . 28
12.11Sparsity Pattern of an ML Operator . 28

13 OpendDX Visualization Capabilities . 29

V Function Reference 31

14 ML Functions . 32
AZ ML Set Amat . 32
AZ set ML preconditioner . 32
ML Aggregate Create . 33
ML Aggregate Destroy . 33
ML Aggregate Set CoarsenScheme Coupled . 34
ML Aggregate Set CoarsenScheme MIS . 34
ML Aggregate Set CoarsenScheme Uncoupled . 34
ML Aggregate Set CoarsenScheme METIS . 35
ML Aggregate Set CoarsenScheme ParMETIS . 35
ML Aggregate Set DampingFactor . 36
ML Aggregate Set MaxCoarseSize . 36
ML Aggregate Set NullSpace . 37
ML Aggregate Set SpectralNormScheme Calc . 37
ML Aggregate Set SpectralNormScheme Anorm . 38
ML Aggregate Set Threshold . 38
ML Create . 39
ML Destroy . 39
ML Gen Blocks Aggregates . 40
ML Gen Blocks Metis . 40
ML Gen CoarseSolverSuperLU . 41
ML Gen MGHierarchy UsingAggregation . 41
ML Gen SmootherAmesos . 42
ML Gen SmootherAztec . 42
ML Gen Smoother BlockGaussSeidel . 43
ML Gen Smoother GaussSeidel . 44
ML Gen Smoother Jacobi . 44
ML Gen Smoother SymGaussSeidel . 45
ML Gen Smoother VBlockJacobi . 46
ML Gen Smoother VBlockSymGaussSeidel . 46
ML Gen Solver . 47
ML Get Amatrix . 48
ML Get MyGetrowData . 48
ML Get MyMatvecData . 49
ML Get MySmootherData . 49

6

ML Init Amatrix . 50
ML Iterate . 50
ML Operator Apply . 51
ML Operator Get Diag . 51
ML Operator Getrow . 52
ML Set Amatrix Getrow . 53
ML Set Amatrix Matvec . 53
ML Set ResidualOutputFrequency . 54
ML Set Smoother . 54
ML Set Tolerance . 55
ML Solve MGV . 55

7

Part I

ML and Related Tools

int i;main()for(;i--<i;++i)--i;"];
read(i+++,"hello, world!",++i++));
read(j,i,p)write(j/p+p,i---j,i/i);
–Obfuscated C Code. Author requested anonymity.

8

1 Introduction
ML development was started in 1997 by Ray Tuminaro and Charles Tong. Currently, there are several full- and
part-time developers. The kernel of ML is written in ANSI C, and there is a rich C++ interface for Trilinos users
and developers.

ML can be customized to run geometric and algebraic multigrid; it can solve a scalar or a vector equation
(with constant number of equations per grid node), and it can solve a form of Maxwell’s equations. For a
general introduction to ML and its applications, we refer to the Users Guide [SHT04], and to the ML web site,
http://software.sandia.gov/ml.

1.1 Extensibility

ML is designed to be flexible. Developers can easily add, for example,

� new aggregation schemes;

� new smoothers;

� new coarse solvers;

� new multigrid cycles.

However, developers should keep the following goals in mind:

1. Code should be robust and error free;

2. Code should be easy to use and understand;

3. Code should be easy to maintain.

This guide furnished guides, suggestions, and guidelines to help present and future ML developers.
Although all sections of this guide will be useful to most developers, it is worth mentioning that this guide

supports three types of development activities:

1. Configuration and building: how to manage the autotools, how to add a new file/example/test;

2. Documentation: how to write Doxygen comments. This guide is not an introduction to Doxygen, but we
give some simple hints to generate efficient Doxygen documentation;

3. Coding conventions: how to write code in ML .

Remark 1 As a note, we recall that guidelines for ML coding style and other suggestions are just that, guidelines
and suggestions. They are not intended to be obeyed zealously. In fact, much of ML does not strictly adhere to
these guidelines because most of the ML code was developed when this developer’s guide did not yet exist.

2 How To Use This Guide
The goal of this document is to guide new ML developers in:

� getting started (in Section 4);

� using available development tools: Bonsai, Bugzilla, Mailman, and the cvs repository (in Section 5);

� modifying how ML is configured and built (in Section 6);

9

� adding a new test to the ML repository (in Section 7);

� writing Doxygen documentation (in Section 8);

� defining some suggested practices to write code for ML (in Section 11);

� better understanding the ML structures (in Section 12);

Remark 2 The aim of the following section is to be useful in that part of code development that has proved to
be painful in the past. Unfortunately, only a limited part of ML ’s capabilities will be covered in this document.
Developers are encouraged to

1. keep this guide up to date after each relevant change;

2. add his own experience;

3. extend the manuscript whenever important topics arise.

3 Notational Conventions
In this guide, we show typed commands in this font:

% a_really_long_command

The character % indicates any shell prompt1. Function names are shown as ML Gen Solver. Names of pack-
ages or libraries as reported in small caps, as EPETRA. Mathematical entities are shown in italics.

4 Getting Started
ML can be obtained in different ways. Here, we suppose that the developer has access to the CVS repository
on software.sandia.gov. In addition, the user account must be in the trilinos and cvs group on
this computer. To request an account, send a note to trilinos-help@software.sandia.gov. The
following variables must be defined (and exported):

CVSROOT=:ext:your_user_name@software.sandia.gov:/space/CVS
CVS_RHS=ssh

(Replace your_user_namewith your login name.) To check out a working copy of ML in the current directory,
type

cvs checkout ml

For a more detailed description of CVS commands, we refer to the Trilinos Developers Guide [HWH03], and to
the GNU CVS home.

Please refer to the ML Users Guide for guidance in configuring ML , We suggest creating a simple script
that contains all the parameters for configure. Be sure to use continuation characters (’\’) properly. The
characters should be at the end of every line, except the last line, and should not be followed by any space. Recall
that autoconf cannot detect spelling mistakes in configure invocation scripts.

Remark 3 Other tips for making the configure and build more efficient can be found in [HWH03, Section 2.6].

1For simplicity, commands are shown as they would be issued in a Linux or Unix environment. Note, however, that ML has and can be
built successfully in a Windows environment.

10

5 Related Tools
5.1 Bonsai

Bonsai is a viewer for the CVS repository that runs via a web browser. Some of its capabilities include

1. file browsing, with or without ”blame” annotation

2. differencing of file versions

3. repository searches based on file or directory names

4. determining CVS changes based on date or time

Bonsai is located at http://software.sandia.gov/bonsai.

5.2 Bugzilla

Users and developers are encouraged to use Bugzilla, to report configuration problems, bugs, suggest enhance-
ments, or request new features. Bugzilla can be found on the web at

http://software.sandia.gov/bugzilla

If reporting a configuration problem or a bug, please attach the configure script that has been used, and the
compilation and/or run-time error.

Remark 4 When checking in a fix that addresses a bug reported in bugzilla, include the bug number. Also
include a short description of the fix.

5.3 Mailing Lists

Any substantive developer discussion should take place on the ML developer’s list,

ml-developers@software.sandia.gov

If the discussion is off-line, it’s entirely appropriate to email a summary of the discussion to the list. The list
archives the discussion. This can be helpful to the developers. Moreover, this discussion can be used as docu-
mentation during external reviews.

11

Part II

Configuration and Building

“C combines the power of assem-
bler with the portability of assem-
bler.” – Anonymous

12

6 Modifying How ML is Configured and Built
ML is built using the GNU tools autoconf and automake [Frea, Freb].

As a small example of how to add a new configure option, let us assume that the current working director
is Trilinos/packages/ml. The file configure.ac contains all of the configure line option definitions (e.g.,
--enable-ml_flops). Suppose that we want to add the configure option “--enable-ml_foo”. (Note
that ml_foo has an underscore and not a dash.)

We first add the following line to configure.ac:

TAC_ARG_ENABLE_OPTION(ml_foo, [This enables the foo option.], ML_FOO, no)

We then run bootstrap:

% ./bootstrap
... some output here ...

Among other things, bootstrapping will modifysrc/ml_config.h.in and create a new macro, HAVE_ML_FOO.
When ML is configured, the file ml_config.h is created. If the option --enable-ml_foowas supplied on
the command line, then HAVE_ML_FOO will be defined in ml_config.h.

We could use this macro directly in ML . Suppose, however, the macro ML_FOO is already used heavily in
ML , and we don’t want to change the ml source. ML has an include file, src/Include/ml_common.h, that
is included in every ML source file. We add the following to ml_common.h:

#ifdef HAVE_ML_FOO
#define ML_FOO
#endif

and voila! Adding --enable-ml_foo on the configure line will now define the macro ML_FOO inside the ml
source.

7 How and Why to Add a New Test
ML has a test suite that is automatically executed every night on a variety of platforms. This suite verifies that
important part of the code execute correctly, and that latest changes do not break the existing code. For more
details on the test harness, we refer to [HWH03, Section 3.3].

There are two ways of adding a new test:

1. Method 1: Adding a separate executable just for testing.

(a) Create a new subdirectory in <ml-dir>/test (for example, new-test).

(b) Put the test source code and the corresponding makefile in new-test.

(c) Add new-test to the script file(s), that is located in one or all of the following:

<ml-dir>/test/scripts/daily/mpi
<ml-dir>/test/scripts/daily/serial
<ml-dir>/test/scripts/weekly/mpi
<ml-dir>/test/scripts/weekly/serial

(Currently, ML has daily test only.) new-test should be added to the foreach block.

(d) Modify<ml-dir>/configure.ac, by addingnew-test to the list contained in AC CONFIG FILES.

(e) Run bootstrap.

13

2. Method 2: Using an example from ml/examples for testing.

(a) Create a new subdirectory in <ml-dir>/test (for example, new-test).

(b) Create an appropriate Makefile.am in new-test. We suggest copying and modifying the
Makefile.am from ml/test/2d_Poisson.

(c) Create an appropriate driver script in new-test by copying and modifying the 2d_Poisson.csh
script from ml/test/2d_Poisson. You should only need to change the value of the executable
name at the top of the script.

(d) Append new-test to the variable TEST SUBDIRS in the script file Test_MLExamples located
in one or all of the following:

<ml-dir>/test/scripts/daily/mpi
<ml-dir>/test/scripts/daily/serial
<ml-dir>/test/scripts/weekly/mpi
<ml-dir>/test/scripts/weekly/serial

(Currently, ML only has daily tests.)

(e) Modify ml/configure.ac by adding new-test to the list contained in AC CONFIG FILES.
(This is near the bottom of configure.ac.)

(f) Run bootstrap.

A new test should be added to the test harness suite when a new feature has been included in ML .

8 How to Write Doxygen Documentation
ML uses doxygen for the comments in C++ code. As Doxygen generally does not produce good output for
C code, the ML C files are not Most Doxygen-complaint. (However, the most important ML structures have
Doxygen comments.)

This section gives some general guidelines about how to write Doxygen documentation. First, a comment
on writing comments: you want your comments to tell what your code does, not how. Remember also that
comments are good, but there is also a danger of over-commenting. You can make small comments to note or
warn about something particularly clever (or ugly), but try to avoid excess. Instead, put the comments at the head
of the function, telling people what it does, and possibly why it does it. Ideally, The best way to write comment
would be to write the code so that the working is obvious, and it’s a waste of time to explain badly written code.

In C++ code, developers should adopt Doxygen-style comments for every class. These comments will be
included in the header file. This is where the interface is, and where people usually look for help.

It is suggested to start a new file with a small Doxygen comment of type:

/*!
* \file <file name>
*
* \brief <Brief description of file content>
*
* \author <Author Name>
*
* \date <Creation and last modification>
*
*/

Functions/methods can be commented in Doxygen style as

14

/*! Here a brief description of the function */
/**
* Search a string in a buffer.
*
* \param buffer (In) the buffer in which to search.
* \param string (In) the string to look for.
* \return the index of the first occurrence.
*/

int ML_find_string(Buffer& buffer, String& string);

This allows the automatic generation of HTML documentation.

Remark 5 Mark every bug and/or potential problem in the code with a comment starting with FIXME:. This
makes it very easy to locate such problems with tools like grep. Also, some editors (like vim) automatically
highlight the FIXME keyword.

9 Exporting ML ’s Dependencies to Other Packages
ML ’s dependencies are exported to other packages via the file ml/Makefile.export.in. When ML is
configured, autoconf produces the file Makefile.export, which defines the variable ML EXPORT LIBS.
Packages that depend on ML should use ML EXPORT LIBS in their configure and build process to ensure their
link lines are correct.

If a dependency on package XX is introduced during ML development, this dependency should be added to
ml/Makefile.export.in as follows.

1. Modify the definition of ML EXPORT LIBS by appending

-L$(XX_BUILD_DIRECTORY)/src $(XX_LIBS)

2. Give the location of XX’s build directory:

XX_BUILD_DIRECTORY = $(ML_BUILD_DIRECTORY)/../XX

3. Give the name of the XX library:

HAVE_ML_XX = @HAVE_ML_XX@
ifeq ($(HAVE_ML_XX),true)
XX_LIBS = libXX.a
else
XX_LIBS =
endif

Note that XX LIBS is defined only if ML has been configured with XX enabled.

10 FAQ
1. Question: The ./configure command fails with the following error:

15

checking for Fortran 77 libraries...
checking for dummy main to link with Fortran 77 libraries... unknown
configure: error: linking to Fortran libraries from C fails
See ‘config.log’ for more details.

Answer: The most likely problem is an incorrect configure line option. Check that all of the library and
include locations that you’ve specified are correct. Look in config.log to find the exact error.

2. Question: I am building with LAM under RH9 Linux, and configure complains that it cannot find
mpi++.h.
Answer: Add -DLAM_BUILDING to your CXX parameters; for instance,

../configure --with-cxxflags="-DLAM_BUILDING"

3. Question: I’m getting warnings about non-modifiable left hand sides when using ML free.
Answer: ML free is a macro. No casting of the argument is necessary or even correct. The argument to
ML free is used within the macro source on the left hand side of a logical check.

Good: ML free(i);

Bad: ML free((void *) i); (does not compile on SGI, for instance)

4. Question: Are C++ style comments, i.e, //, ok to use in ML?
Answer: C++ style comments are fine to use in C++ files. You must use C style comments, i.e., /* */,
in *.c files. Otherwise, the code will not compile on either Solaris machines or on Janus.

5. Can I use C99?
Answer: Most compilers do not support C99 standard. Only C89 code should be included in the ML

distribution. The rational is that many platforms (like ASCI-Red, for instance) still have very old compilers,
that are not C99-compliant.

16

Part III

Coding Practices

When the code and the com-
ments disagree, both are probably
wrong.

17

11 Suggested Practices for C++ code
ML is written in both C and C++. The C++ programming language differs substantially from the C programming
language. In terms of usage, C is more like Pascal than it is like C++.

Therefore, it is important to adopt good coding habits, one for C, and another for C++. A good style guide
can enhance the quality of the code that we write. This Section tries to present a standard set of methods for
achieving that end for C++ code.

It is, however, the end itself that is important. Deviations from this standard style are acceptable if they
enhance readability and code maintainability. Major deviations require a explanatory comment at each point
of departure so that later readers will know that you didn’t make a mistake, but purposefully are doing a local
variation for a good cause.

Further suggestions on “how to write good C/C++ code” can be found, for instance, in the NOX guide, and
the Epetra Developers Coding Guidelines [MAH03].

11.1 General
� Any code that links to Trilinos, and any Trilinos file must define HAVE_CONFIG_H.

� Although there is no maximum length requirement for source files, long files are cumbersome to deal with.

� Lines longer than 80 columns should be avoided. Use C/C++’s string concatenation to avoid unwieldy
string literals and break long statements onto multiple lines.

char *s1 = "hello\n"
"world\n"; // s1 is exactly the same as s2,

char *s2 = "hello\nworld\n";

The line length limit is related to the fact that many printers and terminals are limited to an 80 character
line length. Source code that has longer lines will cause either line wrapping or truncation on these devices.
Both of these behaviors result in code that is hard to read.

� No #pragma directive should be used. #pragma directives are, by definition, non-standard, and can
cause unexpected behavior when compiled on other systems. On another system, a #pragma might even
have the opposite meaning of the intended one.

� Macros are seldom necessary in C++. The construct #define NAME value should never be used. Use
a const or enum instead, because the debugger can deal with them symbolically, while it can’t with a
#define, and their scope is controlled and they only occupy a particular namespace, while #define
symbols apply everywhere except inside strings.

Macros in C are frequently used to define ”maximum” sizes for things. This results in data structures that
impose arbitrary size restrictions on their usage, a particularly insidious source of bugs. Try not to carry
forward this limitation into C++.

� When incrementally modifying existing code, follow the style of the code you are modifying, not your
favorite style. Nothing is harder to read than code where the personal style changes from line to line.

� Don’t use global data. Consider using file- or class-static data members instead. (However, the use of static
data should be minimized if not avoided.)

� A char may be unsigned or signed. You can’t assume either. Thus, only use (unmodified) char if you don’t
care about sign extension and can live with values in the range of 0-127.

18

� Always provide the return type of a function explicitly, The value being returned should be enclosed in
parenthesis.

return i; // No!
return(i); // Yes

� Functions with a return type of void should use an ”empty” return determent.

void foo() {
...
return;

}

� Functions that don’t take any parameter should use an empty parameter list, and not say void.

� Always define a pointer when you declare it. Either set it equal to an address in memory, or set it equal to
zero. If you don’t define a pointer as you declare it, you will never know if it will be accessed before you
assign to it. This goes both for local variables, and for class members in constructors.

� Use zero (0) instead of NULL in C++ code.

� Always include a default case in a switch statement, or an else in a sequence of if-else if’s.

� Do not use spaces around ‘.’ or ‘->’, or between unary operators and operands.

� Always provide a space on both sides of ‘=’ signs and all virginal operators.

� Use parenthesis to make the code readable.

� The block of any if statement should always follow on a separate line.

if (/*Something*/) i++; // No!

if (/*Something*/) // Yes!
i++;

� Operators should have a space on both sides of them. (Exception if the * and & deferencing operators.).
This makes it easier to distinguish which usage is intended.

int* a // defining a pointer to int
a * b // multiplying two variables
*a // deferencing a pointer

11.2 File Naming Conversions
� C and C++ header files end in .h;

� C source files end in .c, and C++ source files end in .cpp;

� All file (header and source, for library and examples) begin with ml_;

� For C++ files, the name of the files should correspond to the name of the class they define.

19

11.3 Include File Structure
� Every include file must contain a mechanism that prevents multiple inclusions of the file. For example, the

following should follow the header information for the file ml_foo.h:

#ifndef ML_FOO_H
#define ML_FOO_H

...body of include file goes here

#endif

� Definition of classes that are only accessed via pointers (*) or references (&) should be declared using
forward declarations, and not by including the header files.

11.4 Naming Conventions
� All ML functions should begin with ML_;

� All ML -Epetra C++ functions and classes should be in the namespace ML Epetra;

� All ML functions and class names should begin with an uppercase letter;

� All Get or Set functions should be as follows: ML_Get_PrintLevel();

� All ML class data members should end with an underscore (e.g. int NumLevel_). No other variable
names should ever end with an underscore;

� Do not use identifiers that begin with one or two underscores;

� Accessor method should have the same name as the attribute they access, without the underscore:

int someVar_;
int SomeVar() { return someVar_);

� Variables used for loops counters should be names i,j,k, etc. in that order.

� For C++ code, C-style casts should never be used. User static_cast, reinterprest_cast, and
const_cast instead.

� const_cast should be avoided as much as possible. When you need to modify an object that is logically
const but not bitwise const, use the mutable keyword instead.

� Member definition in constructors: Member definition should be formatted as follows, each on their own
line, with the colon preceding the first one, a comma following all but the last one, and the opening curl
brace of the function body on a new line.

MLClass::MLClass(int foo)
: SomeMemberVar(0),
SomeOtherVar(foo+1)
{

...
}

20

� Declare only one variable per line.

int i,j; // No!
int i;
int j;

This is mainly to avoid confusion resulting from mixing int and int * declarations, and also to give
room for additional comments (when required).

� The inclusion of every non-C++ header file must be surrounded by the extern ”C” construct.

� Function calls that are intended to be called from C that take input-only struct arguments may wish to use
pointers, since C does not have references. Such pointers must, of course, be declared const.

� The public, protected and private section of a class are to be declared in that order;

� Friend class declarations should immediately precede the private section, to emphasize that they too can
access those members;

� The order functions are listed in the .c. or .cpp file should match the order they are listed in the class
declaration in the .h file.

11.5 Indentation
� (Loose) convention is to put the opening brace last on the line, and put the closing brace first:

if (x is true) {
... function body ...

}

However, there is one special case, namely functions: they have the opening brace at the beginning of the
next line, thus:

int function(int x)
{
body of function

}

Note that the closing brace is empty on a line of its own, except in the cases where it is followed by a
continuation of the same statement, ie a ”while” in a do-statement or an ”else” in an if-statement, like this:

do {
body of do-loop

} while (condition);

� The characters ‘*’ and ‘&’ should be written in the following way:

int* pointer;
double& ref;

Instead of saying the *i is of type int, say that i is of type int*.

21

� An else statement following an if should begin on the line following the i’s closing brace.

if (x == y) {
...

}
else if (x > y) {
...

}
else {
...

}

� Do not put spaces between function names and the parenthesis that starts the list of arguments. It makes
it less obvious that the list of parameters belongs to that function call. Also, leave one space between
parameters, after the comma, but don’t leave any space before the first parameter, after the last one, or
before a comma. If the function has no parameters, don’t leave a space between parenthesis.

void foo(); // No!
void foo (1, 2); // No!
void foo(1, 2); // No!
void foo(1 , 2); // No!

void foo(); // Yes
void foo(1, 2); // Yes

� When defining functions, the leading parenthesis and the first argument (if any) are to be written on the
same line as the function name. If space permists, other arguments and the closing parenthesis may also
be written onthe same line as the function name. Otherwise, each additional argument is to be written on
a separate line (with the closing parenthesis directly after the last argument).

ML_function(int FirstParameter, // No!
int SecondParamete, int ThirdParameter)

{
..

}

ML_function(// No!
int FirstParameter,
int SecondParamete,
int ThirdParameter

) {
..

}

ML_function(int FirstParameter, int SecondParameter, // Yes
int ThirdParameter)

{
...

}

22

� cin/cout/cerr-like indentation should look like this:

cout << "Problem:\t" << problem.name()
<< "Solution:\t" << problem.solution()
<< endl;

� If you split an expression into multiple lines, split it after an operator, not before it:

if (condition_number_one &&
condition_number_two &&
condition_number_three)

11.6 Portability

Probably, the only way to write really portable code, is to test extensively on all the desired (and available) archi-
tectures. Using g++, the following flags can be useful to detect non-ANSI features: -ansi -pedantic -Wall.
Flag -ftrapv can cause ML to crash, as some random functions generate an overflow. Flag -Weffc++ can be
very helpful, but recall that system files can produce a lot of warnings with this flag.

23

Part IV

Extending ML

24

ML_CHK_ERR(ierr) If ierr != 0, this macro prints out an error message, and returns
ierr.

ML_CHK_ERRV(ierr) If ierr != 0, this macro prints out an error message, and returns
void.

ML_RETURN(ierr) If ierr != 0, this macro prints out an error message. This macro
always returns ierr.

ML_EXIT(ierr) If ierr != 0, this macro prints out an error message. This macro
always exits.

Table 1. C++ return and exit macros.

12 Main Structures of ML
12.1 Managing Memory

ML has macros that wrap the system calls to allocate and free memory. “ML allocate” should be used instead of
“malloc”. “ML free” should be used instead of “free”.

12.2 Error Handling

The code should always check return values of functions for errors and, whenever possible, try to recover from
errors, by catching an integer return value2. The use of assert() calls extensively to check the invariants
in your code. This will dramatically decrease your debugging time by catching inconsistencies early. See also
Table 1.

12.3 Output

ML uses the concept of print level. Each output sentence has a value from - to 10 (10 being verbose), and it
will be printed out only if the current print level is below this value. Each print statement should be preceded by
a ML_Get_PrintLevel(). Standard output should be sent to stdout (C) or cout (C++). Warnings and
errors should be sent to stderr (C) and cerr (C++).

12.4 How Getrow() Works

The following simple code can be used to get all local rows of an ML_Operator, here called Amat.

int allocated = 1;
int* colInd = new int[allocated];
double* colVal = new double[allocated];
int NumNonzeros;
int ierr;

for (int i = 0 ; i < Amat->outvec_leng ; ++i)
{

ierr = ML_Operator_Getrow(Amat,1,&i,allocated,colInd,colVal,&NumNonzeros);

if (ierr == 0) {

2Currently ML does not support try/catch blocks.

25

do {
delete [] colInd;
delete [] colVal;
allocated *= 2;
colInd = new int[allocated];
colVal = new double[allocated];
ierr = ML_Operator_Getrow(Amat,1,&i,allocated,colInd,colVal,&NumNonzeros);

} while (ierr == 0);
}
// .. do something with the row elements

}
delete [] colInd;
delete [] colVal;

The error code ierr is zero if the allocated space was enough to copy on vectors colInd and colVal the
nonzero elements and their (local) column numberfor row i. If ierr==0, then the user can reallocate colInd
and colVal, using a larger chunk of memory, and recall the getrow() function.

12.5 Apply the Smoother to a Vector

The following fragment of code can be used to apply the pre/post smoother defined for level ilevel to a vector
rhs. The starting solution is defined in vector rhs. We suppose that the ML hierarchy has already been filled
with the appropriate structures.

ML_Smoother * ptr = ((ml_->SingleLevel[ilevel]).pre_smoother);

int length = ml_->Amat[ilevel].outvec_leng;
double sol[length];
double rhs[lenght];
// ... here define the elements for sol and rhs
// the number of smoother applications is ptr->ntimes;

ML_Smoother_Apply(ptr, length,
tmp_sol, length, rhs, ML_NONZERO);

12.6 Print an ML Operator in a File

The following simple fragment of code can be used to dump an ML_Operator to a file, say my_operator.

// ml is an ML_struct, already filled with the appropriate operators
char name[] = "my_operator";
ML_Operator_Print(&(ml->Amat[LevelID_[i]]), name);

The code works in serial and parallel. Serial runs will create a file called my_operatator.serial; this file
can be easily read by MATLAB, where a sparse matrix can be created using spconvert(). Parallel runs will
create a file for each process. For parallel runs, one may find useful the following function:

int ML_Operator_Print_UsingGlobalOrdering(ML_Operator *matrix,
const char label[],
int *global_row_ordering,
int *global_col_ordering)

26

This function prints a ML_Operator into MATLAB format. Only one file is generated using global ordering. In
input, matrix is an ML_Operator, distributed among the proceses If the matrix is rectangular, the user should
pass in both a global row ordering and a global column numbering. The matrix will be written in MATLAB (i,j,k)
format to file label.m. The last two parameters can be se to NULL.

12.7 Timing

The following variables can be used to track timing:

� ML_TIMING;

� ML_TIMING_DETAILED.

12.8 Checking Memory Usage

Probably, the easiest way to check the memory usage (under Linux) is to use valgrind, like for instance

% valgrind --leak-check=yes --show-reachable=yes ./ml_example.exe

This also works in parallel:

% mpirun -np 4 valgrind --leak-check=yes --show-reachable=yes ./ml_example.exe

(but it is slower, and can produce a lot of output.)
Another way is to compile ML with the flag ML_MEM_CHECK. Then, the user can insert a call to ML_print_it(),

to print out all the ML allocagted memory that is still to be deleted. This check can be expensive for large runs.

12.9 Attaching a Debugger to ML

To debug ML on a serial computer (that is, using only one processor), one can simply type somthing like

% gdb ./mlguide.exe
GNU gdb Red Hat Linux (5.3post-0.20021129.18rh)
Copyright 2003 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "i386-redhat-linux-gnu".
(gdb) r
... output of the code ...

Unfortunatly, most debuggers (like gdb) cannot directly run parallel applications. In this case, one can still
attach to the desired process (or possibly to more than one), in a very simple way:

1. In the part of the code where one wish to start debugging, call the following function:

ML_PauseForDebugger(Comm);

where Comm is an ML_Comm structure;

2. Define the environmental variable ML_BREAK_FOR_DEBUGGER, for instance (using BASH)

$ export ML_BREAK_FOR_DEBUGGER=1

27

3. Alternatively, if using class MultiLevelPreconditioner, create a file called ML_debug_now in the working
directory.

4. Run the code as required,

$ mpirun -np 2 ./mlguide.exe
Host and Process Ids for tasks
Host: s850675.sandia.gov PID: 4153
Host: s850675.sandia.gov PID: 4154

** Pausing because environment variable ML_BREAK_FOR_DEBUGGER has been set.
**
** You may now attach debugger to the processes listed above.
**
** Enter a character to continue >

The code prints out the process ID of each ML’s process. After attaching, the user proceed by inserting a
char value.

12.10 Structure ML Comm

The structure ML_Comm is defined as follows:

typedef struct ML_Comm_Struct
{

int ML_id;
int ML_mypid;
int ML_nprocs;
USR_COMM USR_comm;
int (*USR_sendbytes)(void*,unsigned int,int,int,USR_COMM);
int (*USR_irecvbytes)(void*,unsigned int,int*,int*,USR_COMM,USR_REQ*);
int (*USR_waitbytes)(void*,unsigned int,int*,int*,USR_COMM,USR_REQ*);
void (*USR_cheapwaitbytes)(void*,unsigned int,int*,int*,USR_COMM,USR_REQ*);
USR_ERRHANDLER *USR_errhandler;

} ML_Comm;

To get the process ID, simply use comm->ML_mypid. To get the MPI communicator, one can proceed as
follows:

int orig_comm;
orig_comm = comm->USR_comm;
// now orig_comm can be used as MPI_COMM_WORLD

12.11 Sparsity Pattern of an ML Operator

FunctionML_Operator_PrintSparsity()can be used to visualize the sparsity pattern of an ML Operator.
The function, that can be used for both serial and parallel run, has the following syntax:

int ML_Operator_PrintSparsity(ML_Operator* Op, char* title,
char* FileName, int PrintDecomposition,
int NumPDEEqns);

28

Op is a pointer to the ML Operator, title is a character array that will be inserted in the postscript file,
FileName a valid file name. If PrintDecomposition is set to ML_YES, the postscript file will contain
horizontal an vertical lines, corresponding to the division of the rows and columns among the processors. Finally,
NumPDEEqns defines the number of PDE equations. If greater than 1, only the sparsity pattern of the block
matrix will be plotted.

Two example of output are reported in Figure 1.Amat

Rmat

Figure 1. Sparsity pattern of two ML Operators: the fine-level matrix (left) and
the (non-smoothed) restriction operator from finest to coarsest level. The finest-
level matrix has size 60, and corresponds to a 1D Laplacian on a Cartesian grid.
The lines in the matrix show the division of rows and columns among the (two)
processors.

13 OpendDX Visualization Capabilities
ML supports limited capabilities for the visualization of and statistical information for aggregates, with an inter-
face to OpenDX. Currently, only Uncoupled, METIS and ParMETIS aggregation routines can dump files
in OpenDX format.

The procedure to create the OpenDX input files is as follows:

1. Add the following line after the creation of the ML Aggregate object

ML_Aggregate_VizAndStats_Setup(ag, MaxMgLevels);

where MaxMgLevels is the maximum number of levels (this is the same value used to create the ML

object).

2. Create the multilevel hierarchy;

3. Write OpenDX file using the instruction

ML_Aggregate_VizAndStats_Compute(ml, ag, MaxMgLevels, x, y, z,
option, filename);

29

where ml is the ML object, ag the ML Aggregation object, and x,y,z are double vectors, whose size
equals the number of local nodes in the fine grid, containing the coordinates of fine grids nodes. option
is an integer value defined so that:

� option = 1 : solution of 1D problem (y and z can be NULL);
� option = 2 : solution of 2D problems (z can be NULL);
� option = 3 : solution of 3D problems.

Processor X will write its own file, filename_levelY_procX, where Y is the level. filename can
be set to NULL (default value of .graph will be used in this case).

Note that in AMG there is no mesh associated with coarser levels. Therefore
ML Aggregate VizAndStats Compute needs to assign a set of coordinates to each aggregate. This is
done by computing the center of gravity of each aggregate (starting from the fine grid and finishing at the
coarsest level).

ML_Aggregate_VizAndStats_Computewill also write statistical information to the screen.

4. Deallocate memory using

ML_Aggregate_VizAndStats_Clean(ag, MaxMgLevels).

At this point, one should copy file viz_aggre.net andviz_aggre.cfg (located in $ML_HOME/util/)
in the directory where the output files are located, and run OpendDX with the instruction

% dx -edit viz_aggre.net

Other instructions are reported in file $ML_HOME/util/viz_aggre.README. An example of code can be
found in file $ML_HOME/examples/ml_aztec_simple_METIS.c.

30

Part V

Function Reference

31

14 ML Functions

Prototype

int AZ ML Set Amat(ML *ml object, int k, int isize, int osize, AZ MATRIX *Amat,
int *proc config)

Description

Create an ML matrix view of an existing Aztec matrix and store it within the ‘ml object’ context.

Parameters

ml object On input, ML object pointer (see ML Create). On output, the discretization matrix of
level k is the same as given by Amat.

k On input, indicates level within ml object hierarchy (should be between 0 and Nlevels
�

-
1).

isize On input, the number of local rows in the submatrix stored on this processor.

osize On input, the number of columns in the local submatrix stored on this processor not
including any columns associated with ghost unknowns.

Amat On input, an Aztec data structure representing a matrix. See the Aztec User’s Guide.

proc config On input, an Aztec data structure representing processor information. See the Aztec
User’s Guide.

Prototype

void AZ set ML preconditioner(AZ PRECOND **Precond, AZ MATRIX *Amat,
ML *ml object, int options[])

Description

Associate the multigrid V cycle method defined in ml object with an Aztec preconditioner. Thus, when Precond
and options are passed into the Aztec iterative solver, it will invoke the V cycle multigrid algorithm described
by ml object.

32

Parameters

Precond On input, an Aztec data structure representing a preconditioner. On output, the multi-
grid V cycle method described by ml object will be associated with this preconditioner.
See the Aztec User’s Guide.

Amat On input, an Aztec data structure representing a matrix. See the Aztec User’s Guide.

ml object On input, ML object pointer (see ML Create) representing a V cycle multigrid method.

options On input, an Aztec data structure representing user chosen options. On output, set
appropriately for multigrid V cycle preconditioner.

Prototype

int ML Aggregate Create(ML Aggregate **agg object)

Description

Create an aggregate context (or handle). This instance will be used in all subsequent function invocations that
set aggregation options.

Parameters

agg object On input, a pointer to a noninitialized ML Aggregate object pointer. On output, points
to an initialized ML Aggregate object pointer.

Prototype

int ML Aggregate Destroy(ML Aggregate **agg object)

Description

Destroy the aggregate context, agg object, and delete all memory allocated by ML in building and setting the
aggregation options.

33

Parameters

agg object On input, aggregate object pointer (see ML Aggregate Create). On output, all memory
allocated by ML and associated with this context is freed.

Prototype

int ML Aggregate Set CoarsenScheme Coupled(ML Aggregate *agg object)

Description

Set the aggregate coarsening scheme to be used as ‘coupled’.

Parameters

agg object On input, aggregate object pointer (see ML Aggregate Create). On output, the ‘cou-
pled’ aggregation will be used for automatic coarsening.

Prototype

int ML Aggregate Set CoarsenScheme MIS(ML Aggregate *agg object)

Description

Set the aggregate coarsening scheme to be used as ‘MIS’.

Parameters

agg object On input, aggregate object pointer (see ML Aggregate Create). On output, the ‘MIS’
aggregation will be used for automatic coarsening.

Prototype

34

int ML Aggregate Set CoarsenScheme Uncoupled(ML Aggregate *agg object)

Description

Set the aggregate coarsening scheme to be used as ‘uncoupled’.

Parameters

agg object On input, aggregate object pointer (see ML Aggregate Create). On output, the ‘uncou-
pled’ aggregation will be used for automatic coarsening.

Prototype

int ML Aggregate Set CoarsenScheme METIS(ML Aggregate *agg object)

Description

Set the aggregate coarsening scheme to be used as ‘METIS’.

Parameters

agg object On input, aggregate object pointer (see ML Aggregate Create). On output, the
‘METIS’ aggregation will be used for automatic coarsening.

Prototype

int ML Aggregate Set CoarsenScheme ParMETIS(ML Aggregate *agg object)

Description

Set the aggregate coarsening scheme to be used as ‘ParMETIS’.

35

Parameters

agg object On input, aggregate object pointer (see ML Aggregate Create). On output, the
‘ParMETIS’ aggregation will be used for automatic coarsening.

Prototype

int ML Aggregate Set DampingFactor(ML Aggregate *ag, double factor)

Description

Set the damping factor used within smoothed aggregation. In particular, the interpolation operator will be
generated by ���������
	 ���
�� ���
where
 is the discretation matrix, 	 is the damping factor (default is � �), � is an estimate of the spectral radius
of
 , and

���
are the seed vectors (tentative prolongator).

Parameters

agg object On input, aggregate object pointer (see ML Aggregate Create). On output, the damping
factor is set to factor.

factor On input, damping factor that will be associated with this aggregation object.

Prototype

int ML Aggregate Set MaxCoarseSize(ML Aggregate *agg object, int size)

Description

Set the maximum coarsest mesh to ‘size’. No further coarsening is performed if the total number of matrix
equations is less than this ‘size’.

36

Parameters

agg object On input, aggregate object pointer (see ML Aggregate Create). On output, the coarsest
mesh size will be set.

size On input, size indicating the maximum coarsest mesh size.

Prototype

int ML Aggregate Set NullSpace(ML Aggregate *agg object, int num PDE eqns, int null dim,
double *null vect, int leng)

Description

Set the seed vectors (rigid body mode vectors) to be used in smoothed aggregation. Also indicate the number of
degrees of freedom (DOF) per node so that the aggregation algorithm can group them together.

Parameters

agg object On input, an ML Aggregate object pointer created by invoking ML Aggregate Create.
On output, the seed vectors and DOFs per node are set to null vect and num PDE eqns
respectively.

num PDE eqns On input, indicates number of equations that should be grouped in blocks when per-
forming the aggregation. This guarantees that different DOFs at a grid point remain
within the same aggregate.

null dim On input, number of seed vectors that will be used when creating the smoothed aggre-
gation grid transfer operator.

null vect On input, the seed vectors are given in sequence. Each processor gives only the local
components residing on the processor. If null, default seed vectors are used.

leng On input, the length of each seed vector.

Prototype

int ML Aggregate Set SpectralNormScheme Calc(ML Aggregate *ag)

37

Description

Set the method to be used for estimating the spectral radius of
 (the discretization matrix) to be conjugate
gradient. This spectral radius estimate is used when smoothing the initial prolongation operator (see
ML Aggregate Set DampingFactor).

Parameters

agg object On input, aggregate object pointer (see ML Aggregate Create). On output, the spectral
radius estimate will be determined by a conjugate gradient routine.

Prototype

int ML Aggregate Set SpectralNormScheme Anorm(ML Aggregate *ag)

Description

Set the method to be used for estimating the spectral radius of
 (the discretization matrix) to be the infinity
norm. This spectral radius estimate is used when smoothing the initial prolongation operator (see
ML Aggregate Set DampingFactor).

Parameters

agg object On input, aggregate object pointer (see ML Aggregate Create). On output, the spectral
radius estimate will be taken as the infinity norm of the matrix.

Prototype

int ML Aggregate Set Threshold(ML Aggregate *agg object, double tolerance)

Description

Set the drop tolerance used when creating the matrix graph for aggregation. Entries in the matrix
 are dropped
when �
 ������� � ���
	���
 ����� �
 ������� �
 ������� � � .

38

Parameters

agg object On input, an ML Aggregate object pointer created by invoking ML Aggregate Create.
On output, drop tolerance for creating the matrix graph is set.

tolerance On input, value to be used for dropping matrix entries.

Prototype

int ML Create(ML **ml object, int Nlevels)

Description

Create an ML solver context (or handle). This ML instance will be used in all subsequent ML function
invocations. The ML object has a notation of levels where different multigrid operators corresponding to
different grid levels are stored.

Parameters

ml object On input, a pointer to a noninitialized ML object pointer. On output, points to an
initialized ML object pointer.

Nlevels Maximum number of multigrid levels within this ML object.

Prototype

int ML Destroy(ML **ml object)

Description

Destroy the ML solver context, ml object, and delete all memory allocated by ML in building and setting
options.

Parameters

ml object On input, ML object pointer (see ML Create). On output, all memory allocated by ML

and associated with this context is freed.

39

Prototype

int ML Gen Blocks Aggregates(ML Aggregate *agg object, int k, int *nblocks, int **block list)

Description

Use aggregates to partition submatrix residing on local processor into blocks. These blocks can then be used
within smoothers (see for example ML Gen Smoother VBlockJacobi or
ML Gen Smoother VBlockSymGaussSeidel).

Parameters

ml object On input, ML object pointer (see ML Create).

k On input, indicates level within ml object hierarchy where the aggregate information is
found that defines partitioning.

nblocks On output, indicates the number of partitions.

block list On output, equation i resides in the block list[i]th partition.

Prototype

int ML Gen Blocks Metis(ML *ml object, int k, int *nblocks, int **block list)

Description

Use Metis to partition submatrix residing on local processor into blocks. These blocks can then be used within
smoothers (see for example ML Gen Smoother VBlockJacobi or
ML Gen Smoother VBlockSymGaussSeidel).

Parameters

ml object On input, ML object pointer (see ML Create).

k On input, indicates level within ml object hierarchy where the discretization matrix is
found that will be partitioned.

nblocks On input, indicates number of partitions desired on each processor. On output, indicates
the number of partitions obtained.

40

block list On output, equation i resides in the block list[i]th partition.

Prototype

int ML Gen CoarseSolverSuperLU(ML *ml object, int k)

Description

Use SuperLU for the multigrid coarse grid solver on level k within ml object and perform any initialization that
is necessary.

Parameters

ml object On input, ML object pointer (see ML Create). On output, the coarse grid solver of level
k is set to use SuperLU.

k On input, indicates level within ml object hierarchy (must be the coarsest level in the
multigrid hierarchy).

Prototype

int ML Gen MGHierarchy UsingAggregation(ML *ml object, int start, int inc or dec,
ML Aggregate *agg object)

Description

Generate a multigrid hierarchy via the method of smoothed aggregation. This hierarchy includes a series of grid
transfer operators as well as coarse grid approximations to the fine grid discretization operator. On completion,
return the total number of multigrid levels in the newly created hiearchy.

Parameters

ml object On input, ML object pointer (see ML Create). On output, coarse levels are filled with
grid transfer operators and coarse grid discretizations corresponding to a multigrid hi-
erarchy.

41

start On input, indicates multigrid level within ml object where the fine grid discretization is
stored.

inc or dec On input, ML INCREMENT or ML DECREMENT. Normally, set to
ML INCREMENT meaning that the newly created multigrid operators should
be stored in the multigrid levels: start, start+1, start+2, start+3, etc. If Set to
ML DECREMENT, multigrid operators are stored in start, start-1, start-2, etc.

agg object On input, an initialized aggregation object defining options to the generation of grid
transfer operators. If set to NULL, default values are used for all aggregation options.
See ML Aggregate Create.

Prototype

int ML Gen SmootherAmesos(ML *ml object, int k, int AmesosSolver,
int MaxProcs)

Description

Use Amesos interface to direct solvers for the multigrid coarse grid solver on level k within ml object and
perform any initialization that is necessary.

Parameters

ml object On input, ML object pointer (see ML Create). On output, the coarse grid solver of level
k is set to use Amesos.

k On input, indicates level within ml object hierarchy (must be the coarsest level in the
multigrid hierarchy).

AmesosSolver On input, indicates the direct solver library to use in the coarse solution. It can be:
ML AMESOS UMFPACK, ML AMESOS KLU, ML AMESOS SUPERLUDIST,
ML AMESOS MUMPS, ML AMESOS SCALAPACK.

MaxProcs On input, indicates maximum number of processors to use in the coarse solution (only
for ML AMESOS SUPERLUDIST).

Prototype

42

void ML Gen SmootherAztec(ML *ml object, int k, int options[], double params[],
int proc config[], double status[], int N iterations,
int pre or post, void (*prec fun)(double *, int *, int *,
double *, AZ MATRIX *, AZ PRECOND *))

Description

Set the smoother (either pre or post as indicated by pre or post) at level k within the multigrid solver context to
invoke Aztec . The specific Aztec scheme is given by the Aztec arrays: options, params, proc config, and status
and Aztec preconditioning function: prec function.

Parameters

ml object On input, ML object pointer (see ML Create). On output, a smoother function is asso-
ciated within ml object at level k.

k On input, indicates where the smoother function pointer will be stored within the multi-
grid hierarchy.

options, params
proc config, status

On input, Aztec arrays that determine the Aztec scheme and are used for Aztec to return
information. See the Aztec User’s Guide.

N iterations On input, maximum Aztec iterations within a single smoother invocation. When set to
AZ ONLY PRECONDITIONER, only one iteration of the preconditioner is used without
an outer Krylov method.

pre or post On input, ML PRESMOOTHER or ML POSTSMOOTHER indicating whether the
smoother should be performed before or after the coarse grid correction.

prec fun On input, Aztec preconditioning function indicating what preconditioner will be used
within Aztec . Normally, this is set to AZ precondition. See the Aztec User’s Guide.

Prototype

int ML Gen Smoother BlockGaussSeidel(ML *ml object, int k, int pre or post, int ntimes,
double omega, int blocksize)

Description

Set the multigrid smoother for level k of ml object and perform any initialization that is necessary. When using
block Gauss Seidel, the total number of equations must be a multiple of blocksize. Each consecutive group of
blocksize unknowns is grouped into a block and a block Gauss Seidel algorithm is applied.

43

Parameters

ml object On input, ML object pointer (see ML Create). On output, the pre or post smoother of
level k is set to block Gauss Seidel.

k On input, indicates level within ml object hierarchy (should be between 0 and Nlevels
�

-
1). ML ALL LEVELS sets the smoothing on all levels in ml object.

pre or post On input, ML PRESMOOTHER or ML POSTSMOOTHER indicating whether the pre
or post smoother is to be set.

ntimes On input, sets the number of block Gauss Seidel iterations that will be performed.

omega On input, sets the damping parameter to be used during this block Gauss Seidel smooth-
ing.

blocksize On input, sets the size of the blocks to be used during block Gauss Seidel smoothing.

Prototype

int ML Gen Smoother GaussSeidel(ML *ml object, int k, int pre or post, int ntimes,
double omega)

Description

Set the multigrid smoother for level k of ml object and perform any initialization that is necessary.

Parameters

ml object On input, ML object pointer (see ML Create). On output, the pre or post smoother of
level k is set to Gauss Seidel.

k On input, indicates level within ml object hierarchy (should be between 0 and Nlevels
�

-
1). ML ALL LEVELS sets the smoothing on all levels in ml object.

pre or post On input, ML PRESMOOTHER or ML POSTSMOOTHER indicating whether the pre
or post smoother is to be set.

ntimes On input, sets the number of Gauss Seidel iterations that will be performed.

omega On input, sets the damping parameter to be used during this Gauss Seidel smoothing.

Prototype

44

int ML Gen Smoother Jacobi(ML *ml object, int k, int pre or post, int ntimes,
double omega)

Description

Set the multigrid smoother for level k of ml object and perform any initialization that is necessary.

Parameters

ml object On input, ML object pointer (see ML Create). On output, the pre or post smoother of
level k is set to Jacobi.

k On input, indicates level within ml object hierarchy (should be between 0 and Nlevels
�

-
1). ML ALL LEVELS sets the smoothing on all levels in ml object.

pre or post On input, ML PRESMOOTHER or ML POSTSMOOTHER indicating whether the pre
or post smoother is to be set.

ntimes On input, sets the number of Jacobi iterations that will be performed.

omega On input, sets the damping parameter to be used during this Jacobi smoothing.
ML DEFAULT sets it to .5

Prototype

int ML Gen Smoother SymGaussSeidel(ML *ml object, int k, int pre or post, int ntimes,
double omega)

Description

Set the multigrid smoother for level k of ml object and perform any initialization that is necessary.

Parameters

ml object On input, ML object pointer (see ML Create). On output, the pre or post smoother of
level k is set to symmetric Gauss Seidel.

k On input, indicates level within ml object hierarchy (should be between 0 and Nlevels
�

-
1). ML ALL LEVELS sets the smoothing on all levels in ml object.

45

pre or post On input, ML PRESMOOTHER or ML POSTSMOOTHER indicating whether the pre
or post smoother is to be set.

ntimes On input, sets the number of symmetric Gauss Seidel iterations that will be performed.

omega On input, sets the damping parameter to be used during this symmetric Gauss Seidel
smoothing.

Prototype

int ML Gen Smoother VBlockJacobi(ML *ml object, int k, int pre or post, int ntimes,
double omega, int nBlocks, int *blockIndices)

Description

Set the multigrid smoother for level k of ml object and perform any initialization that is necessary. A block
Jacobi smoothing algorithm will be used where the size of the blocks can vary and is given by nBlocks and
blockIndices (see ML Gen Blocks Aggregates and ML Gen Blocks Metis).

Parameters

ml object On input, ML object pointer (see ML Create). On output, the pre or post smoother of
level k is set to variable block Jacobi.

k On input, indicates level within ml object hierarchy (should be between 0 and Nlevels
�

-
1). ML ALL LEVELS sets the smoothing on all levels in ml object.

pre or post On input, ML PRESMOOTHER or ML POSTSMOOTHER indicating whether the pre
or post smoother is to be set.

ntimes On input, sets the number of block Jacobi iterations that will be performed.

omega On input, sets the damping parameter to be used during this block Jacobi smoothing.

nBlocks On input, indicates the total number of block equations in matrix.

blockIndices On input, blockIndices[i] indicates block to which ith element belongs.

Prototype

46

int ML Gen Smoother VBlockSymGaussSeidel(ML *ml object, int k, int pre or post,
int ntimes, double omega, int nBlocks,
int *blockIndices)

Description

Set the multigrid smoother for level k of ml object and perform any initialization that is necessary. A block
Gauss Seidel smoothing algorithm will be used where the size of the blocks can vary and is given by nBlocks
and blockIndices (see ML Gen Blocks Aggregates and ML Gen Blocks Metis).

Parameters

ml object On input, ML object pointer (see ML Create). On output, the pre or post smoother of
level k is set to variable block symmetric Gauss Seidel.

k On input, indicates level within ml object hierarchy (should be between 0 and Nlevels
�

-
1). ML ALL LEVELS sets the smoothing on all levels in ml object.

pre or post On input, ML PRESMOOTHER or ML POSTSMOOTHER indicating whether the pre
or post smoother is to be set.

ntimes On input, sets the number of block symmetric Gauss Seidel iterations that will be per-
formed.

omega On input, sets the damping parameter to be used during this block symmetric Gauss
Seidel smoothing.

nBlocks On input, indicates the total number of block equations in matrix.

blockIndices On input, blockIndices[i] indicates block to which ith element belongs.

Prototype

int ML Gen Solver(ML *ml object, int scheme, int finest level, int coarsest level)

Description

Initialize the ML solver context, ml object, so that it is ready to be used in a solve. ML Gen Solver should be
called after the multigrid cycle is fully specified but before ML Iterate or ML Solve MGV is invoked.

47

Parameters

ml object On input, ML object pointer (see ML Create). On output, all necessary initialization is
completed.

scheme On input, must be set to ML MGV indicating a multigrid V cycle is used.

finest level On input, indicates the location within ml object where the finest level is stored. Nor-
mally, this is ‘0’.

coarsest level On input, indicates location within ml object where the coarsest grid is stored. When
doing smoothed aggregation, this can be determined using the total number of multigrid
levels returned by ML Gen MGHierarchy UsingAggregation.

Prototype

int ML Get Amatrix(ML *ml object, int k, ML Operator **matrix)

Description

Set *matrix to point to the discretization matrix associated at level k within the multigrid solver context
ml object. This pointer can then be passed into functions like: ML Operator Apply, ML Operator Get Diag,
and ML Operator Getrow.

Parameters

ml object On input, ML object pointer (see ML Create).

k On input, indicates which level within the multigrid hierarchy should be accessed.

matrix On output, *matrix points to the discretization matrix at level k within the multigrid
hierarchy. This pointer can then be passed into the functions ML Operator Apply,
ML Operator Get Diag, and ML Operator Getrow.

Prototype

void * ML Get MyGetrowData(ML Operator *Amat)

48

Description

Returns the user specific data pointer associated with the ML Operator given by Amat. This function is
normally employed when users write their own matrix getrow function and they need to get back the pointer
that was given with ML Init Amatrix.

Parameters

Amat On input, points to matrix for which we seek the internal data pointer.

Prototype

void * ML Get MyMatvecData(ML Operator *Amat)

Description

Returns the user specific data pointer associated with the ML Operator given by Amat. This function is
normally employed when users write their own matrix-vector product function and they need to get back the
pointer that was given with ML Init Amatrix.

Parameters

Amat On input, points to matrix for which we seek the internal data pointer.

Prototype

void * ML Get MySmootherData(ML Smoother *Smoother)

Description

Returns the user specific data pointer associated with the ML Smoother object given by Smoother. This
function is normally employed when users write their own smoother function and they need to get back the
pointer that was given with ML Set Smoother.

49

Parameters

Smoother On input, points to the smoother for which we seek the internal data pointer.

Prototype

int ML Init Amatrix(ML *ml object, int k, int ilen, int olen, void *data)

Description

Set the size information for the discretization matrix associated at level k within ml object. Additionally,
associate a data pointer that can be used when writing matrix-vector product and matrix getrow functions.

Parameters

ml object On input, ML object pointer (see ML Create). On output, size information is associated
with the discretization matrix at level k.

k On input, indicates where discretization size information will be stored within the multi-
grid hierarchy.

ilen On input, the number of local rows in the submatrix stored on this processor.

olen On input, the number of columns in the local submatrix stored on this processor not
including any columns associated with ghost unknowns.

data On input, a data pointer that will be associated with the discretization matrix and could
be used for matrix-vector product and matrix getrow functions.

Prototype

int ML Iterate(ML *ml object, double *sol, double *rhs)

Description

Iterate until convergence to solve the linear system using the multigrid V cycle defined within ml object.

50

Parameters

ml object On input, ML object pointer (see ML Create).

sol On input, a vector containing the initial guess for the linear system contained in
ml object. On output, the solution obtained by performing repeated multigrid V cy-
cles.

rhs On input, a vector contain the right hand side for the linear system contained in
ml object.

Prototype

int ML Operator Apply(ML Operator *A, int in length, double p[], int out length,
double ap[])

Description

Invoke a matrix-vector product using the ML Operator A. That is perform ���
�
 ��� . Any communication or

ghost variables work needed for this operation is also performed.

Parameters

A On input, an ML Operator (see ML Get Amatrix).

in length On input, length of vector � (not including ghost variable space).

p On input, vector which will be multiplied by
 .

out length On input, length of vector ��� .

ap On output, vector containing result of
 ��� .

Prototype

int ML Operator Get Diag(ML Operator *A, int length, double **diag)

51

Description

Get the diagonal of the ML Operator A (which is assumed to be square).

Parameters

A On input, an ML Operator (see ML Get Amatrix).

length On input, number of diagonal elements wanted.

diag On output, sets a pointer to an array containing the diagonal elements. NOTE: this is
not a copy but in fact a pointer into an ML data structure. Thus, this array should not
be freed.

Prototype

int ML Operator Getrow(ML Operator *A, int N requested rows, int requested rows[],
int allocated space, int columns[], double values[],
int row lengths[])

Description

Get a row (or several rows) from the ML Operator A. If there is not enough space in columns and values to
hold the nonzero information, this routine returns a ‘0’. Otherwise, a ‘1’ is returned.

Parameters

A On input, an ML Operator (see ML Get Amatrix).

N requested rows On input, number of matrix rows for which information is returned.

requested rows On input, specific rows for which information will be returned.

allocated space On input, length of columns and values.

columns On output, the column numbers of each nonzero within each row requested in
requested rows (where column numbers associated with requested rows[i]
appear before column numbers associated with requested rows[j] with i � j).

values On output, the nonzero values of each nonzero within each row requested in
requested rows (where nonzero values associated with requested rows[i]
appear before nonzero values associated with requested rows[j] with i � j).

52

row lengths On output, row lengths[i] indicates the number of nonzeros in row i.

Prototype

int ML Set Amatrix Getrow(ML *ml object, int k, int (*getrow)(ML Operator *, int , int* , int,
int*, double* , int*), int (*comm)(double *vec, void *data),
int comm vec leng)

Description

Set the matrix getrow function for the discretization matrix associated at level k within the multigrid solver
context ml object.

Parameters

ml object On input, ML object pointer (see ML Create). On output, matrix getrow function is
associated with the discretization matrix at level k.

k On input, indicates where the matrix getrow function pointer will be stored within the
multigrid hierarchy.

getrow On input, a function pointer to the user-defined matrix getrow function.

comm On input, a function pointer to the user-defined communication function.

Prototype

int ML Set Amatrix Matvec(ML *ml object, int k, int (*matvec)(ML Operator *, int, double *,
int, double *))

Description

Set the matrix-vector product function for the discretization matrix associated at level k within the multigrid
solver context ml object.

53

Parameters

ml object On input, ML object pointer (see ML Create). On output, matrix-vector product func-
tion is associated with the discretization matrix at level k.

k On input, indicates where the matrix-vector product function pointer is stored within
the multigrid hierarchy.

matvec On input, a function pointer to the user-defined matrix-vector product function.

.

Prototype

int ML Set ResidualOutputFrequency(ML *ml object, int output freq)

Description

Set the output frequency of residual information. ML Iterate prints the two norm of the residual every
output freq iterations.

Parameters

ml object On input, ML object pointer (see ML Create). On output, residual printing frequency
is set.

output freq On input, value to use for printing frequency.

Prototype

int ML Set Smoother(ML *ml object, int k , int pre or post, void *data,
int (*func)(ML Smoother *, int, double *, int, double *), char *label)

Description

Set the smoother (either pre or post as indicated by pre or post) at level k within the multigrid solver context to
invoke the user-defined function ‘func’ and pass in the data pointer ‘data’ via ML Get MySmootherData.

54

Parameters

ml object On input, ML object pointer (see ML Create). On output, a smoother function is asso-
ciated within ml object at level k.

k On input, indicates where the smoother function pointer will be stored within the multi-
grid hierarchy.

pre or post On input, ML PRESMOOTHER or ML POSTSMOOTHER indicating whether the
smoother should be performed before or after the coarse grid correction.

data On input, a data pointer that will be passed into the user-defined function ‘func’.

func On input, smoothing function to be used at level k when performing a multigrid V cycle.
The specific signature and details of this function are given in the Users Guide.

label On input, a character string to be associated with Smoother. This string is printed by
some routines when identifying the method.

Prototype

int ML Set Tolerance(ML *ml object, double tolerance)

Description

Set the convergence criteria for ML Iterate. Convergence is declared when the 2-norm of the residual is reduced
by ‘tolerance’ over the initial residual. This means that if the initial residual is quite small (i.e. the initial guess
corresponds quite closely with the true solution), ML Iterate might continue to iterate without recognizing that
the solution can not be improved due to round-off error. Note: the residual is always computed after performing
presmoothing on the finest level (as opposed to at the beginning or end of the iteration). Thus, the true residual
should be a little bit better than the one used by ML.

Parameters

ml object On input, ML object pointer (see ML Create). On output, tolerance is set for conver-
gence of ML Iterate.

tolerance On input, value to use for convergence tolerance.

Prototype

55

int ML Solve MGV(ML *ml object, double *din, double *dout)

Description

Perform one multigrid V cycle iteration to the solve linear system defined within ml object.

Parameters

ml object On input, ML object pointer (see ML Create).

din On input, the right hand side vector to be used when performing multigrid.

dout On output, an approximate solution obtained after one multigrid V cycle.

�

Nlevels refers to the argument given with ML Create.

56

References
[Frea] Free Software Foundation. Autoconf Home Page. http://www.gnu.org/software/autoconf.

[Freb] Free Software Foundation. Automake Home Page. http://www.gnu.org/software/automake.

[HWH03] Michael A. Heroux, James M. Willenbring, and Robert Heaphy. Trilinos Developers Guide.
Technical Report SAND2003-1898, Sandia National Laboratories, 2003.

[MAH03] P. .M. Sexton M. A. Heroux. Epetra developers coding guidelines, 2003.

[SHT04] M. Sala, J.J. Hu, and R.S. Tuminaro. ML3.0 Smoothed Aggregation User’s Guide. Technical Report
SAND2004-2195, Sandia National Laboratories, Albq, NM, 2004.

57

